Effect of Triple-Bond Position on

Thermodynamic Properties of Mixtures:

Phase Equilibria For The System Acetone-3-Hexyne

L. J. HIRTH, H. G. HARRIS and J. M. PRAUSNITZ

University of California, Berkeley, California

Vapor-liquid equilibrium data have recently been reported for mixtures of polar organic solvents with 1-hexyne (1). In order to establish how mixture properties are affected by the position of the triple bond, we have obtained experimental measurements for the system acetone-3-hexyne.

Isothermal total-pressure measurements were made using the experimental technique described previously (1 to 3). Acetone prepared as before (1), and with comparable purity, was used. The 3-hexyne was distilled at high reflux in a 10-plate Oldershaw column and dried over molecular sieves. Chromatographic analysis indicated purity to be about 99%. Vapor pressures of the pure liquids are given in Table 1. Measurements over the entire composition range were made at 0, 25 and 55°C. The data were reduced with a modification of Barker's method (4) as described elsewhere (1, 5).

TABLE 1. VAPOR PRESSURES OF PURE LIQUIDS

T, °C.	Vapor Pressure, mm Mercury		
	Acetone	3-Hexyne	
0	70.05	22.64	
25	230,24	85.35	
55	731.1	306.0	

The results are shown in Table 2 which gives coefficients for the three-parameter Redlich-Kister expansion of the excess Gibbs energy. Also shown are the limiting activity coefficients for 3-hexyne. These limiting activity coefficients are nearly twice as large as those obtained for 1-hexyne infinitely dilute in acetone (1).

Figure 1 compares excess Gibbs energies of acetone-3-hexyne with those for acetone-1-hexyne at 25°C.; the excess Gibbs energy of the former system is about twice that of the latter.

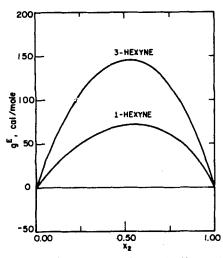


Fig. 1. Effect of triple-bond position—Acetone(1)-Hexyne(2) at 25°C.

Table 2. Excess Gibbs Energies for Acetone(1) and 3-Hexyne(2)

$$g^E/RT = x_1x_2[a + b(x_1 - x_2) + c(x_1 - x_2)^2]$$

Standard % deviation

T,°C.	а	ь	c in	$\left(\frac{P_{\rm exp}-P_{\rm calc}}{P_{\rm exp}}\right)$	γ 2∞
0	1.08621	-0.08546	0.09080	0.95	2.98
25	0.98404	-0.10450	0.06776	0.58	2,58
55	0.86312	-0.16875	0.03026	0.61	2.06

Polar organic solvents tend to form charge-transfer complexes with unsaturated hydrocarbons (6, 7); as complex stability rises, excess Gibbs energy falls. Because of steric reasons we might expect that acetone forms a slightly more stable complex with 1-hexyne than with 3-hexyne. A more important factor, however, is likely hydrogen bonding between acetone and the hydrogen attached to the triply-bonded carbon in 1-hexyne; this possibility is excluded for 3-hexyne. Spectroscopic data and other evidence are available (8, 9) which support such a conclusion. Finally, the results shown in Figure 1 may follow in part from differences in polarity; the position of the triple bond in hexyne influences the molecule's symmetry and therefore, its dipole moment. The dipole moment of 3-hexyne is zero whereas that of 1-hexyne is 0.89 Debye. The dipole moment of acetone is 2.88 Debye. Therefore, since acetone and 1-hexyne are more alike than acetone and 3-hexyne, deviations from ideal behavior for that system are smaller than those for acetone-3-hexyne.

Our experimental results suggest that the position of the triple bond in alkynes may have an appreciable affect on thermodynamic properties of alkyne-polar solvent mixtures. This effect should be taken into consideration in the design of extraction or extractive distillation separations.

ACKNOWLEDGMENT

The authors are grateful to the National Science Foundation for financial support and to the Computer Center, University of California, Berkeley for the use of its facilities.

LITERATURE CITED

- Harris, H. G., and J. M. Prausnitz, AIChE J., 14, 737 (1968).
- Hermsen, R. W., and J. M. Prausnitz, Chem. Eng. Sci., 18, 485 (1963).
- Orye, R. V., and J. M. Prausnitz, Trans. Faraday Soc., 61, 1338 (1965).
- 4. Barker, J. A., Australian J. Chem., 6, 207 (1953).
- 5. Prausnitz, J. M., C. A. Eckert, R. V. Orye, and J. P. O'Connell, "Computer Calculations for Multicomponent Vapor-Liquid Equilibria," Prentice-Hall, Englewood Cliffs, N. I. (1967).
- N. J. (1967).

 6. Andrews, L. J., and R. M. Keefer, "Molecular Complexes in Organic Chemistry," Holden-Day, San Francisco, Calif. (1964).
- 7. Weimer, R. F., and J. M. Prausnitz, Spectrochimica Acta, 22, 77 (1966).
- Brand, J. C. D., G. Eglington, and J. F. Morman, J. Chem. Soc. (London), 2526 (1960).
- 9. ——, G. Eglington, and J. Tyrrell, ibid., 5914 (1965).

L. J. Hirth is an NSF Summer Fellow from Auburn University, Auburn, Alabama.